
Virtual Solar Observatory Applications

Customizing the Virtual Solar Observatory

Using the VSO as a cost effective
way to power a specific content

WEB site

•Light weight, distributed back end
•Minimum coding required
•Quick implementation
•Automatically includes improvements as VSO
development continues

Viewing the VSO Cart

A code generator builds the WEB site perl CGIs:
The input to the generator consist on:
•XML schema document
•XML document holding the configuration
parameter
•Perl modules or separate code insets
•VSO user interface base classes and templates

XSD Document
Code Insets

XML
Configuration

CGI Generator
VSO User Interface

Base classes/
Templates

Package DiglibUI;

use base
qw(VSOUIBase);

sub new {
. . .

CGI
Scripts

F. I. Suárez-Solá1, R.S. Bogart2, A.R. Davey3, G. Dimitoglou4, J.B. Gurman4, F. Hill1, J. Hourclé4, P.C. Martens5, K.Q. Tian2, S. Wampler1, K. Yoshimura5

1National Solar Observatory, Tucson AZ – 2Stanford University, Stanford CA – 3Southwest Research Institute, Boulder CO – 4NASA/GSFC, Greenbelt MD – 5Montana State University, Bozeman MT

The VSO architecture allows non-
VSO information to flow to and from
the provider. The core acts as a relay
for the extra information.

This permeability takes the
constraint out of the user interface,
allowing site specific customization

VSO Core
Instance

VSO
Request/
Response

‘EXTRA’
elements
Flat XML

VSO
elements

VSO Base
User

Interface

VSO
Request/
Response

VSO
elements

Customize
User

Interface

VSO
Request/
Response

‘EXTRA’
elements
Flat XML

Data
Provider

VSO
Response

‘EXTRA’
elements
Flat XML

VSO
elements

SOAPSOAP

ABSTRACT:
This poster shows two different uses of the Virtual Solar Observatory framework (currently in development), which are both possible thanks to the virtual, lightweight
and distributed design. The first application takes advantage of the VSO user interface to generate another one similar in look and feel to the VSO UI HTML but with
extended functionality. This would be ideal for a low-budget front-end implementation of an in-house querying tool. The second one is a dedicated Virtual Solar
Observatory user interface (VSO “shopping” Cart) to enable solar scientists to track and log their VSO queries and results sets. These applications are in the early stages
of development. We expect to have part of the functionality in place in December 2004.

Query document for the Digital Library powered by a VSO engine

Site document header

Customized content form

Site document tail

Site specific information
display

Requesting site specific information

The VSO cart is designed
to provide the solar
scientist with functionality
to track, log and facilitate
the handling of their VSO
queries and results sets.

The cart information can
be exported to the user’s
desktop or pass around for
others to use in any VSO
instance running on a
local machine or a
centralized server.

Since the cart id is the
only identifier the
contents remain private
and yet accessible to the
user. (given of course that
the user hasn’t forgotten
the cart id in first place)

Two requests done at
different times and
with different VSO
instances.

In this case the user
decided to keep the
second request under
the same cart id as it
was related to the
first request

General comments

Hyperlinks to previous
requests under the same cart id

Breakdown of request per provider

Overcoming hurdles:

One of the biggest hurdles the cart faces in the use of automatic file request
programming, is the lack of standardized interfaces for asynchronous file
requests. I.e. The provider will handle the request and notify the user once
it is ready or alternatively the client will check in a timely manner for its
request status.

Currently for non URL-FILE type request, (e.g. STAGING --
asynchronous requests -- see poster “Data Transfer Negotiation Within the
Virtual Solar Observatory” J. Hourclé et al), the cart is forced to use an e-
mail system as intermediary to centralized its file request responses. This is
because at present the only way providers can notify the client is via e-mail
and there is no functionality in place for the clients to tag (e.g. with an user
id) the requests.

At NSO and MSU we are developing a file SOAP request server that
allows client status querying and/or client notification via SOAP, mail etc.

SOAP FILE
Broker

Request
validation

Notification

Internal File
Request

Archiver
Internal

File handler

e-mail
server

Client

State keeper

File Request
Unique ID

File ids

Client ID

Archiver
File ids

The file ids are unique identifiers known to the archiver.

